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FOREWORD 

This report reveals a feature of the noise generation process in turbofans described herein as 
"mode trapping". As with most physical phenomena, its understanding developed on more than 
one front and several people contributed to the evolution of the idea. Test data characteristic of 
mode trapping and elements of its physical explanation were first identified in a paper by Topol, 
Holhubner, and Mathews entitled "A Reflection Mechanism for Aft Fan Tone Noise" (AIAA 
Paper No. 87-2699, October 1987). At that time, the author of this report (Hanson) was 
employed at the Hamilton Standard division of United Technologies and working on noise 
associated with unsteady coupling between rotors of a counter rotation prop-fan. While 
consulting to Hamilton Standard, also in 1987, Professor Mhten Landahl of MIT recognized the 
possibility of trapping a wave between 2 rotors and proposed a method for computing the effect 
via an impedance model. In conjunction with Landahl's work, Professor Kenneth Hall, then at 
UTRC and now at Duke University, originated the idea of using the S. N. Smith's unsteady 
cascade code to represent the coupling and developed a model for the interaction of 2 unloaded 
rotors at a single harmonic. 

In 1990, at the request of the Pratt and Whitney division of United Technologies, Hanson 
continued work on the reflection mechanism to put it on a firmer analytical basis for ducted fans. 
His work was funded by NASA-Lewis in 1991 as part of Contract NAS3-25952, during the 
course of which the author transferred to Pratt and Whitney. NASA pro-ject management was 
provided originally by Dr. Christopher Miller and finally by Mr. Dennis Huff. The author owes 
thanks to all of the individuals named above for their support and technical assistance. Thanks 
are also due to Professor Edward Kerschen of the University of Arizona who provided valuable 
encouragement on use of the actuator disk model employed herein and on the matrix method 
finally used to solve the coupled equations. 
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SUMMARY 

Typical analytical models for interaction between rotor and stator in a turbofan analyze the 
effect of wakes from the rotor impinging on the stator, producing unsteady loading, and thereby 
generating noise. Reflectiordtransmission characteristics of the rotor are sometimes added in a 
separate calculation. In those models, there is a one-to-one relationship between wake harmonics 
and noise harmonics; that is, the BPF (blade passing frequency) wake harmonic causes only the 
BPF noise harmonic, etc. This report presents a more complete model in which flow tangency 
boundary conditions are satisfied on 2 cascades in relative motion for several harmonics 
simultaneously. By an extension of S .  N. Smith's code for 2D flat plate cascades, the noise 
generatiodfrequency scattering/blade row reflection problem is solved in a single matrix 
inversion. It is found that the BPF harmonic excitation of the stator scatters considerable energy 
into the higher BPF harmonics due to relative motion between the blade rows. Furthermore, 
when swirl between the rotor and stator is modeled, a "mode trapping" effect occurs which 
explains observations on fans operating at rotational speeds below BPF cuton: the BPF mode 
amplifies between blade rows by multiple reflections but cannot escape to the inlet and exit ducts. 
However, energy scattered into higher harmonics does propagate and dominates the spectrum at 
2 and 3 times BPF. 

This report presents the complete derivation nf the theory, comparison with a previous 
(more limited) coupled rotor/stator interaction theory due to Kaji and Okazaki, exploration of the 
mode trapping phenomenon, and parametric studies showing the effects of vane/blade ratio and 
rotodstator interaction. For generality, the analysis applies to stages where the rotor is either 
upstream or downstream of the stator and to counter rotation stages. The theory has been coded 
in a FORTRAN program called CUP2D, documented in Volume I1 of this report. 

It is concluded that the new features of this analysis - unsteady coupling, frequency 
scattering, and flow turning between rotor and stator - have a profound effect on noise generation 
caused by rotor/stator interaction. Treating rotors and stators as isolated cascades is not adequate 
for noise analysis and prediction. 



SECTION 1 
INTRODUCTION 

Rotodstator interaction is undoubtedly the oldest and most frequently treated subject in 
turbofan noise research. Countless reports and journal articles have appeared over the past three 
decades analyzing the complex aerodynamic interference and acoustic reflection effects that 
contribute to noise at blade passing frequency and its harmonics. Geometry of interest shown 
in figure 1 is representative of modern engines where the rotor is upstream of the stator. The 
first major insight into the acoustics of this kind of fan was provided by Tyler and Sofrin (ref.1) 
and then Sofrin and McCann (ref. 2) who revealed the link from number of blades, number of 
vanes, and tip speed to the duct modes and their propagatioddecay behavior. Methods to 
compute the strength of these modes via unsteady aerodynamic calculations at first used crude 
representations of unsteady loading response at the stators. Then Ventres, Theobald, and Mark 
(ref. 3) at Bolt Beranek and Newman developed a computer code (herein called the BBN code) 
that linked a 2D flat plate cascade theory for the unsteady aerodynamics to the 3D annular duct 
acoustic modes via a strip analysis. Their theory included axial flow and non-compact treatment 
of a stator that could be leaned, tapered, or swept. The unsteady aerodynamic model in the BBN 
code can be explained with reference to figure 2. Rotor blades trail viscous wakes producing an 
upwash distribution on the stator. The stator responds with the lift  response calculated to produce 
an equal and opposite upwash so as to satisfy the flow tangency boundaiy conditions on the 
vanes. The computed loading then acts as a dipole distribution in the ensuing coupling to the 
duct modes. In figure 2, the rotor blades are shown with dashes to emphasize that their role is 
only to generate the wakes; any reflection effect that they might have on the acoustics or 
unsteady aerodynamics is ignored in the BBN code. 

Nevertheless, the BBN model includes much of the important physics of the problem and 
has been exercised extensively by Topol (ref. 4) in comparison with test data. However, in 
another study, Topol, Holhubner, and Mathews (ref. 5) found that the method failed to predict 
observed phenomena, even qualitatively at some RPM's, for a fan designed for BPF cutoff. 
These authors noted that BPF modes could cut on in the swir: '- lw region between the rotor and 
stator at speeds considerably lower than in the inlet a n i  e.tit tlow. In this intermediate speed 
range (between BPF cut-on in the swirl region and cuton in the aft duct flow), 2xBPF and 3xBPF 
harmonics (which are cut on) in the aft region were found to increase to levels far above those 
predicted by the BBN code. Aft-radiated sound power behavior for the first 3 BPF harmonics 
is shown in figure 3 for a typical, current day, high bypass ratio fan engine with 38 blades and 
72 vanes. The revealing behavior to note in Ggure 3 is the rapid onset of 2xBPF and 3xBPF at 
the RPM where BPF cuts on in the swirl region. Reference 5 concluded that the increase in 
higher harmonics in the aft region was due to the following sequence of events. The rotor wake 
excites the stator predominately at BPF; this sends a BPF wave to the rotor that scatters it into 
higher harmonics; these harmonics are cut on and propagate through the stator to the far field. 
This hypothesis waq supported by analytical modeling that included various simple models for 
the source strength and for reflection and transmission coefficients at the rotor and stator. 

The BBN code cannot be used to check this reflection/scattering hypothesis because it 
includes neither the frequency scattering mechanism nor reflections from the rotor. In the present 
paper, the model depicted in figure 2 is refined to include the rotor in the aerodynamic 
calculations via a fully coupled unsteady analysis satisfying the flow tangency boundary condition 
on both blade rows simultaneously for several harmonics. Thus, noise generation, frequency 
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scattering, and reflections from both rotor and stator are solved simultaneously via a single matrix 
inversion. Furthermore, swirl between the rotor and stator is modeled via a simplistic system 
that turns the flow at the rotor leading edge and straightens it at the stator trailing edge. (This 
is a first approximation to including blade mean loading in the analysis by concentrating it at 
actuator disks.) Modal jump conditions across these disks are derived to satisfy continuity of 
mass and momentum. It should be pointed out that Kaji and Okazaki developed a coupled 
rotorktator method (ref. 6) in 1970; however, this model was confined to one frequency and did 
not include the swirl effect. Correlation with their work is shown later in this paper. 

This work is an extension of the Smith code (ref. 7), which is an industry-standard 2D, 
compressible, linearized, unsteady flat plate cascade method. The coupled cascade theory has 
been coded in FORTRAN 77 as CUP2D and developed on U r n T M  workstations. The theory 
applies to counter-rotation stages and to rotor/stator stages with the rotor either upstream or 
downstream of the stator. Applications herein are primarily to rotorEGV combinations, but 
comparisons are given with the Kaji and Okazaki results for IGVhotor interaction. 
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SECTION 2 
REVIEW OF SMITH’S CASCADE METHOD 

Since this paper is an extension of Smith’s theory (ref. 7), we start with an overview of his 
method. Further description can be found in a survey paper by Whitehead (ref. 8) and, of course, 
in the original Smith paper. Figure 4 shows the basic geometry to be a single cascade of flat 
plates aligned with the mean flow direction. The objective is to find the unsteady loading 
distribution on the cascade (and the resulting output waves) for a specified velocity disturbance 
input to the system. Smith’s approach is to derive an integral equation for the upwash on the 
cascade caused by the unknown load distribution, discretize the equation, and solve for the loads 
by matrix inversion. 

Smith’s analysis starts with 
momentum. He finds solutions for 

the linearized differential equations for continuity and 
velocity and pressure disturbances in the form 

where the space, time behavior is given by the exponential and the overbarred quantities are 
complex amplitude coefficients. The kernel of the integral equation is expressed as a Fourier 
series in the y coordinate with terms counted by an index k ( r  in Smith’s notation), which 
corresponds to the circumferential spinning mode index in the Tyler-Sofrin theory. Transverse 
wavenumber fl can take on all values given by 

, - m < k < + m  ~ - 2 n k  
S 

P =  
where CJ is the interblade phase angle which will be discussed later. (3 and frequency o are 
inputs to the problem. 

Substitution of equation I into the original continuity and momentum equations leads to a 
characteristic equation with two families of solutions, each having a different form for the axial 
wavenumbers. In one family are the vorticity waves which are carried at the mean flow speed 
in the downstream direction only. Components of these waves are denoted by the subscript 3 
as in u3, vp and p3.  Axial wavenumbers for the vorticity waves are 

The second family are the pressure waves, which propagate at the speed of sound. Upstream- 
and downstream-going pressure waves are denoted by the subscripts 1 and 2, respectively and 
their axial wavenumbers are given by 

where a is the speed of sound and the square root contains the cutoff information critical in fan 
acoustics. When the argument of the square root is positive, the axial wavenumber is real and 
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the wave propagates at constant amplitude in the duct; in this case, the k choice is made to give 
a shorter wavelength upstream and a longer wavelength downstream. When the argument of the 
square root is negative, the wave decays exponentially; the 2 choice is made to guarantee 
vanishing disturbance for x+-. The cuton criterion can be simply stated: a wave with 
transverse wavenumber p will propagate if the frequency is “large enough”, that is if (w+Vp)’ 
>(a 2 2 2  -U )p . The higher the mode order, the higher the frequency required for propagation. 

Blade loading is in terms of the vorticity distribution T(zo) over the source coordinate 
zo (along the chord). With this notation, Smith wrote the following for the transverse velocity 
in the pressure wave anywhere upstream of the cascade 

where c is the airfoil chord. vI’ is a function of o, p, 0, and W given by Smith and defined 
in Appendix C. Expressions for the downstream velocity components are obtained by replacing 
the 1 subscripts with 2’s and 3’s. Axial velocity and pressure are linked to the v”s as follows 

I 

for pressure waves and 

I V I  ,2 
%,2 = a1,2p 

and 

I 
I 

for the vorticity waves (which do not produce a pressure disturbance). 

Finally, to discretize equation 5 ,  the load distribution is divided into Np panels and the 
integral is converted to a sum according to 

The result is 

where zoj is the normalized chordwise coordinate. 

The next section shows in general teims how this type of expression can be adapted to the 
blade row interaction problem. 
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SECTION 3 
DEVELOPMENT OF THEORY FOR LOADING AND ACOUSTICS 

OF COUPLED CASCADES 

The previous section described the mechanics of finding waves generated by the unsteady 
loading distribution on an isolated, infinite (in the y direction) 2-dimensional cascade. Geometry 
to be analyzed for the coupled cascade problem is sketched in figure 5. The analysis is kept 
general so that either blade row can rotate in either direction; thus, counter-rotation cases and 
IGV/rotor combinations are included. In spite of this generality, the upstream blade row will be 
called the rotor and the downstream blade row will be called the "stator" to simplify the 
terminology in the lengthy derivation that follows. The typical case of interest herein is for an 
upstream rotor and a downstream stator. In this case, the downstream blade row would be fixed 
and 8 ,  would have a negative value. If the downstream blade row is moving, its tangential 
speed is input as a negative number. 

3.1 DUCT COORDINATES AND MULTIPLE HARMONICS 

The 2-dimensional geometry of figure 5 will be adapted to annular geometry (annulus radius R )  
for the case of a "stator" with B, rotating at angular speed R2 and a rotor with B,  blades 
rotating at angular speed a,. The stator is fixed in the x,y2 coordinates with inflow angle 
8, defined by its rotational speed R,R and the swirl velocity Vs, as shown by the velocity 
triangle. The rotor is fixed in its x,yI system which is moving up at speed Q,R. The relative 
air ,speed in the tangential direction is R,R-V,y which defines the inflow angle 8,. 
In this section we adapt Smith's formulas to the notation of duct acoustics and account for a 
general periodic waveform rather than a single harmonic. This is done by examination of the 
term in equation 10 that we call the kinematic phase 

w = py +Ot (1 1) 

which is discussed in some detail in appendix A. Frequencies of stator excitation, of course, are 
the blade passing harmonics, o = nB,R,  where we have defined the relative angular velocity 
R=Q,-R,. We normalize the transverse coordinate y ,  - by the radius of the annulus R ,  
effectively converting to cylindrical coordinates with y ,  = R@, for the stator. Appendix A 
shows that the notmalized transverse wavenumher can then be written as 

This is the exponential already familiar from the Tyler-Sofrin spinning mode theory (ref. 1). 
Equations 12 and 13 represent a mode with lobes spinning at angular speed 
nB,W(nB,-kB,), as viewed in the stator frame of reference. 

Given this notation, equation I O  can he generalized immediately for stator waves with 
multiple harmonics: 

nBI-kB2 
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Overbars denote normalization by R, the dimensionless axial wavenumber is a , R  = alnk Mr2 
is the relative Mach number W i a ,  and SC, is the spacing to chord ratio for the stator. 
Working forms for the yfs are given in appendix A, for the a’s in Appendix B, and for the 
v”s in appendix C. 

As a preview of the frequency scattering phenomenon, note that yfnk for the stator waves 
can be viewed in rotor frame of reference via the transformation $2=$1 + R t .  The result is 

This shows that the waves caused by any one stator loading harmonic n appear at all multiples 
of vane passing frequency in the rotor coordinate system. 

3.2 ACCOUNTING FOR FLOW TURNING AT THE ROTOR AND STATOR 

The model discussed so far includes swirl in the flow entering the stator but no turning of 
the flow by the rotor and stator loading. Since swirl was fundamental tt, the mechanism 
proposed by Topol et a1 (ref. 5) ,  a method was developed to represent turning of the flow that 
could be combined easily with elements of the Smith code. The scheme is to use actuator disks 
to turn the mean flow at the rotor leading edge and at the stator trailing edge as sketched at the 
top of figure 6.  Since the mean flow properties (tangential and axial velocity, density, speed of 
sound) jump across the inlet and exit interfaces, the unsteady quantities jump also. This is 
handled by deriving reflection and transmission coefficients for each type of wave to maintain 
continuity of mass and momentum (linearized) on a mode-by-mode basis. Derivation of these 
coefficients is given in appendix D. 

Since the actuator disk representation of the mean loading effect seems to be new in this 
context, a few more words are in order. We consider the blade loading to be the sum of a steady 
part and an unsteady part. The unsteady loading is distributed over the blade chords via panels 
as in the original Smith method and is considered small enough to be treated as a perturbation 
of the mean flow. The steady loading is concentrated at the rotor leading edge and at the stator 
trailing edge and may be large enough to have a significant influence on the mean flow. In fact, 
this is its main role in the analysis; it provides the background flow that is perturbed by the 
unsteady loading and controls the propagation properties for the various types of waves. Thus, 
we can think of building up the loading as follows. First, turn on the mean loading. The mean 
flow enters the stage axially, turns at the rotor leading edge, and straightens out again at the 
stator trailing edge. The mean flow is thus divided into three regions by the two actuator disks. 
Mean flow properties in the three regions are considered known from a separate analysis. Next, 
the unsteady loading is activated; the waves behave according to Smith’s theory in each region 
with jumps across the actuator disks to preserve continuity and momentum. 

Smith’s analysis was based on the assumption of sources generating waves in an infinite 
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uniform medium so that there were only outgoing waves. These waves were solutions to a set 
of inhomogeneous equations with blade vorticity representing the loading source. Now we must 
include waves that are solutions to the homogeneous equations to account for the reflections from 
the inlet and exit interfaces. The situation is sketched in figure 6 where we show the loading 
source LS(n,j) sending out the direct source waves KSI ,  KS2, and KS3 from Smith's analysis. 
The reflected waves VSI ,  VS2, and VS3 will be derived in the next section in terms of the inlet 
and exit reflection coefficients. With the KS's and VS's as known functions proportional to 
the loading source, the entire wave field is still driven by the unknown loading elements LS(n,j) 
as with the original Smith method. 

For the reflection and transmission coefficients, three interactions had to be considered, as 
shown in figure 7: upstream-going pressure waves vI could transmit a pressure wave v4 and 
reflect a pressure wave v2 and a vorticity wave v3. Downstream-going pressure v2 and 
vorticity v3 waves could each transmit pressure and vorticity waves (vs and v9)  and reflect 
pressure waves ( v ] ) .  It was most convenient to derive the coefficients in terms of the modal 
transverse velocity components as follows. 

Upstream-going pressure waves at inlet 

Dawnstream-going pressure waves at exit 
- - 

"bpnk 
la2nkXe 

- 
/ a b  prlk = R,  1 ( n ~ k )  v2 e 

Vorticity waves at exit 

Smith's subscripting convention has been continued so that 4 denotes the pressure wave upstream 
of the rotor and 8 and 9 denote the pressure and vorticity waves downstream of the stator. 
Derivation of the reflection and transmission coefficients is given in appendix D. It will be shown 
later that reflections are small at interfaces between regions where a mode is cut on. However, 
for modes passing from a cut on region to a cut off region, the reeflection coefficient is of order 
unity. Thus, modes can become trapped between the rotor and stator and can be amplified, as 
will be seen. 



3.3 EQUATIONS FOR COUPLING 

The wave field between the rotor leading edge and the stator trailing edge can now be 
constructed in terms of direct waves from the load elements (via Smith's methodology) plus the 
waves reflected from the inlet and exit interfaces as sketched in figure 6.  Equations coupling the 
rotor and stator will be derived in 4 arrays of influence coefficients as follows. 

KSS - Stator on Stator 
KSR - Stator on Rotor 
KRR - Rotor on Rotor 
KRS - Rotor on Stator 

Later, these will be assembled into a large matrix to represent the entire coupled system and the 
system of equations will be solved by inverting the large matrix. The difficult parts of KRR and 
KSS have been taken care of by existing subroutines from Smith's original code. In particular, 
all issues of singularities that occur as source and field points approach each other are handled 
by these routines. KRS and KSR and the parts of KRR and KSS associated with the reflected 
waves are new and their derivation is described below. 

Waves Caused by Stator Unsteady Loading 

Consider first the direct waves caused by the stator loading. In terms of a kernel KSZ 
defined helow, we can write for the upstream wave of equation 14 

Similarly, the downstream waves are 

where the kernels are defined by 
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r r r 
(Use of v1 Pnk,  v2 / P n k ,  and v3 /%nk avoids problems later with divisions by 0.) The 

reflected waves are written in parallel form in terms of the coefficients V S I ,  VS2,  and V S 3  which 
will be found in terms of the reflection coefficients derived in appendix D: 

m m  N P  
i(alnkX+W,k) V S I ( n , k j ) x L S ( n j )  (23) 

j = l  
'lref ='b c Pnk e 

n=l k=-m 

Now, by applying the definitions of the reflection coefficients in equations 16-18, 3 
equations can be written for the 3 VS coefficients: 

- - - 
la2nk ' e  R n,k) l a l n k X e  = ( K S ~  e -la2nkXs + v s 2  ) e 

21( vs] 

= (KSI P -Lalnkx~'  + VSI  ) R12(i1,k) 

= (KSI e - l a l n k X s  + VSI ) R13(n,k) 
- v s 2  

vs3 

This set of equations can be solved for V S I ,  VS2, and VS3  in terms of KSI ,  KS2, and KS3 and 
the reflection coefficients, effectively determining the entire wavefield generated by any stator 
loading element LS(n,j). The results upstream and downstream of the stator are 



and 

These velocity fields have only to be evaluated at control points on the stator and rotor to find 
the effect of the stator on itself, KSS,  and the effect of the stator on the rotor, KSR. This is 
treated in the next two sections. 

Effect of Stator on Stator 
We place one control point on each stator loading panel to give the values for x and +2 

for use in equations 27 and 28. Control points, counted by i from 1 to N’, are at the same 
chordwise locations zi used by Smith and lead to the following: 

In examining equations 27 and 28, note that the terms with the KS’s are the direct waves that 
Smith already accounts for in his method. The remaining terms, with the VS’s are common to 
both equations and can be evaluated at the control points. To find the upwash (normal to the 
stator chord), we add the transverse component times case, and minus the axial component times 
sine,, the latter requiring Equations 6 and 8. For control point i the result can be written 

1 N p  
wssi in B ,  Rt - = 
W2 n=l j = l  

KSS ’(nij) x LS(nj) e 

where the primes on wssi and KSS are a reminder that this part of the stator upwash is due to 
the reflected waves and is to be added to matrices from the original Smith method. The array 
of influence functions is 

m 

Equation 30 gives the waveform of the upwash at the stator control points zi as an infinite 
Fourier series. For a matrix solution, we can satisfy the flow tangency requirement 
simultaneously for only a finite number of harmonics, Nh. (By adopting the Smith code, we 
have already accepted tangency at only a finite number of control points, Np, along the chord.) 
Since each of the loading harmonics on each blade row induces upwash at the other blade row 



in all harmonics, it is not clear a priori that truncating the harmonic series will lead to acceptable 
results. It does turn out, however, that the computed results for the lower harmonics are not 
strongly influenced by higher harmonics. A demonstration of this is given later in Section 4. 
Based on the above argument, the upwash waveform can be written 

where 

(33) 
N P  

wss '(n,i> = ~ ~ ~ ' ( n , i j ) x ~ ~ ( n j )  

When KSS' is added to the matrix from the direct waves computed with the Smith subroutines, 
that matrix is called KSS and the net effect of the stator loading elements at the stator control 
points is 

j=1 

N P  
WSS(n,i) = KSS(l2, i j )  xLS(nj )  (34) 

j=1 

This is the first of the coupling equations. It can be seen that, for the effect of the stator on 
itself, each loading harmonic n couples only to the same harmonic in the upwash. 

Effect of Stator on Rotor 
For this effect, we proceed in a similar fashion. But in this case, we will find that each 

loading harmonic on the stator couples to all of the upwash harmonics on the rotor. In the rotor 
coordinate system the control points are 

which can be applied to the form for ynk given by equation 15 or A-17. These apply to waves 
caused by stator loads as viewed in the rotor system and explicitly shows the scattering from 
loading harmonic n into the other harmonics counted by k.  The result, written for a finite 
number of harmonics, is 

wSn' Nh Nh N p  i k B, R f - = KSR(n ,k , i j )xLS(n j )  e 
Wl n=l  k = - ~ ,  j=1 

where 

- - KSR(n,k,ij) = 

-[ (~nkcosO1 -alnk~inO1)(VSl  +KSl e 

+(PnkcosO1 - a 2 n k ~ i n 0 1 )  VS2 e 

1 - i a l f l p x )  e i(a,,kcos81 + Pflksin 8,)c, zi 

- (37) M,l 
i(aZflkcos 9, +~,ksin8,)c,zi 

- 
1 i(a-+,,,cosO + Pnksin 8 Jk] zi + ( a 3 n k ~ o ~ 0 1  +(jnksinO1) VS3 e 
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Note in equation 36 that negative frequencies have appeared as a result of viewing stator waves 
in the rotor coordinate system. To obtain a form parallel to equation 30 with only positive 
frequencies, we rewrite equation 36 using the following strategy. The k-summation can be 
written as a single sided series: 

I (38) 
N h  N h  N p  i k B , R t  -ik B,  R t 

+ KSR(n, -k , i j )  x LS(nj)  e wsri - = [KSR(n,k , i j )xLS(nj )  e 
wl k=l  n=l j-1 

But only the real part of this expression has meaning so we are free to take the complex 
conjugate of any term. Applying this to the second term above and denoting conjugate by a *, 
we find 

which is in terms of positive frequencies, as desired. Now, in parallel with Equation 30 for the 
stator upwash, we can write the upwash waveform as 

i k B 2 R t  
N h  

wSn‘ - = WSR(k,i) c 
w l  k = l  

where the k“’ upwash harmonic on the ith rotor panel is given by 

N h  N p  

n=l j=l 
WSR(k,i) = { KSR(n&,ij> x LS(nj) + [ KSR(n, -k,iJ) x LS(nj ) ]  * } (41) 

This is the second set of coupling equations. Again, note that each stator loading harmonic n 
contributes to all upwash harmonics k on the rotor. 

Waves Caused by Rotor Unsteady Loading 
The derivation for the effect of the rotor loading on the rotor and stator proceeds along 

similar lines; the procedure is only outlined here but the working equations are presented in 
detail. The main differences between the formulas for rotor and stator loading waves is 
permutation of the 1 and 2 indices, permutation of the n’s and k’s, exchange of R’s and S’s in 
some of the symbols, and the appearance of exponentials containing xs, which relate to the 

position of the leading edge of the stator along the x axis. For instance, the direct rotor wave 
upstream is analogous to equation 19 above for the stator 

The direct waves downstream are analogous to equations 20 and 21 and the three coefficients 
corresponding to equation 22 are 
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Reflections from the actuator disks are handled with the same reflection coefficients derived for 
the stator waves. Note the permutation of the n's and k's in comparison with equation 26 

- - 
VRI e ' a 1 h x e =  (KR2 + V R 2 ) e ' a 2 b x e R  &n) - 

+ (KR3 + VR3 ) e R, l(k,n) 
VR2 
VR3 

= (KRI + VRI ) R12(k,n)  
= (KRI + VRI ) Rl7(k,n) 

where, as for the stator loading case, the VR's can be solved for in terms of the KR's. 

(44) 

Effect of Rotor on Rotor 
Upwash caused by the reflected waves on the rotor due to the rotor loading is given by the 

analog of equation 30 for the control points already defined for the stator-on-rotor effect in 
equation 35. 

I - N p  
rri inB212f 

W ,  r t = l  j = l  
- = KRR l (n , i j )  x LR(nj )  e 

where the array of influence coefticienh is given by 

(45) 

As before, we truncate the infinite Fourier series in  equation 43 to the following form in analogy 
with equation 32 

where 
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j = l  

When the terms for the effects of the direct wave are added from the original Smith formulas, 
the primes are dropped and equation 46 becomes 

NP 
WRR(n,i) = KRR(n,ij)  x LR(nj)  (49) 

j=l 

This is the desired coupling equation for the upwash on the rotor caused by the rotor loading. 

Effect of Rotor on Stator 
Here the waveform, including only a finite number of harmonics, is 

wrsi - N h  N h  N p  i kB ,Qt  - - KRS(n,k , i j )xLR(nj )  e 
w 2  n=l k=-Nh J=l  

where 

KRS(n,k,ij) = - - 
1 ia,,xSc i(al,cos02 +P,sin02)c2zi 

-[(pkncos02 -alhsine2) VR1 c 

Mr2 - (5 1)  
i(a2, cos 8,  + p, sin e2)5 zi 

+(/3kncos02 -%knsin02)(KR2 +VR2)e ia2hxs e 

As with the stator loading formulas, we rewrite equation 50 in terms of positive frequencies, 
preserving only the real part of the equation 

To define WRS(k,i), this can be written 

ikB,Qt N h  

w2 k = l  

rsi - = WRS(k,i) c (53) 

where 

which is the last of the coupling equations. 
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3.4 SOLVING THE COUPLED EQUATIONS 

Equations 34, 41, 49, and 54 are four sets of linear equations giving the upwash velocities 
at the stator and rotor control points as functions of the unknown loading on the rotor and stator 
panels. The upwash components are considered known from the requirement of flow tangency 
on the blades and vanes. Specifically, the condition to be satisfied on the rotor is 

WR(n,i) = WRR(n,i) +WSR(n,i) = 0 ,  all n,i (55) 

This states that the sum of the upwash at the rotor due to the rotor and stator waves is zero for 
all harmonics and at  all control points. For the stator, the condition is different because it is 
excited by the viscous wake, as indicated in figure 2. If we call the wake upwash harmonics 
W S ( n , i ) ,  then the stator boundary condition is 

WS(n,i) = WSS(n,i) + WRS(n,i) = - W S ( n , i ) ,  all n,i 

indicating that the net effect of the waves from the stator and rotor must be equal and opposite 
to the wake upwash for flow tangency. Formulas for the wake are given in appendix E. 

The preceding equations can be put into a matrix form written schematically as follows 

which indicates that the rotor and stator loading each cause upwash at both the rotor and stator. 
To find the loading, the matrix equation is inverted subject to the boundary cooditions in 
equations 52 and 53. The method to find the sound pressure and sound power from the unsteady 
loading is described in Section 3.5. 

As indicated above, equation 57 only gives the form of the matrix equation schematically. 
To understand the details, we must look down two levels deeper into the matrix structure. 
Equation 57 shows that rotor and stator are both coupled to themselves and to each other but it 
does not show the frequency scattering explicitly. This can be seen at the next level by 
examining equation 58 where the harmonic dependence is stated explicitly for the special case 
of Nh=3. Loading harmonics are counted by n and upwash harmonics are counted by k .  
From the empty submatrices, it can be seen that there is no frequency scattering for each blade 
row acting on itself. However, for each blade row acting on the other, each loading harmonic 
produces upwash at all harmonics. 

There is a problem which prevents equation 58 from being used directly. Examination of 
equations 41 and 54 reveals that two of the coupling equations do not express a simple linear 
relationship from loading to upwash because of the appearance of the loading complex 
conjugates. This is dealt with by expressing the equations in pure real teims and is explained 
below first for the rotor-on-rotor submatrices and then for the rotor-on-stator submatrices. The 
stator loading submatrices then follow immediately. 
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X 

Equation 49 for the rotor-on-rotor coupling can be written in terms of real and imaginary 
parts as follows 

which can be expressed in matrix form 

which is all real, as desired. This breakdown into real and imaginary pai-ts is applied to each 
submatiix of equation 58. If we wiite the entire coupling system from equation 58 simply as 

then we place the real parts of KRR into K as follows 

Real[KRR(n,ij)] + K [  (2n - 2 ) N p  +i ,  (2n -2)Np + j ]  

Real[KRR(n,ij)] + (212 - l)Np + i  , (2n - l ) N p  +j] 
and (62) 
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and the imaginary parts 

- Imag[KRR(n,ij)] -+ K[ (2n -2)N, + i  , (2n - 'INp +j] 

Imag[KRR(n,ij)] -+ K[ (211 - l)N, + i ,  (2n -2)Np + j ]  
and (63) 

The corresponding locations for the stator-on-stator elements in the lower light hand corner of 
the K matrix for the real parts are 

Real[KSS(n,ij)] -+ K[ 2N," +(2n -2)Np + i  , 2N,N, +(2n -2)Np +j] 
and (64) 

Real[KSS(n,ij)] + K [  2N,N,+(2n-1)Np+i, 2N,Nh+(2n-l)Np+j]  

and for the imaginary parts 

- Imag[KSS(n,ij)] + K [  2NpNh+(2n - 2 ) N ,  + i  , 2NpNh +(2n - 1 ) ~ ~  +j] 
and (65) 

Imag[KSS(n,ij)] -+ K[  2NpNh +(2n - l)Np + i  , 2NpN, +(2n -2)Np +j] 

The situation for the rotor-on-stator elements is slightly more complicated. First, we rewrite 
equation 54, noting that the conjugate of a product is the product of the conjugates in the second 
term 

Then, using the shorthand notation KRS(n,k,i,jj)=KR(k)+iKl(k), this can be written in terms of real 
and imaginary parts 

n=l j=1 

Separating the real and imaginary parts leads to submatrices of the form 

The result of the above development is that the KRS real and imaginary parts are placed into 
the lower left corner of K as follows 

Real[KRS(n,k,ij)] + Real[KRS(n,-k,ij)] -+ K[ 2N,N, +(2k -2)Np + i  , (2n -2)N, +j] 
-Imag[KRS(n,k,ij)] - Imag[KRS(n,-k,ij)] -+ K [  2NpNh +(2k -2)Np + i  , (2n - l)Np +j] (69) 
Imag[KRS(n,k,ij)] - Imag[KRS(n,-k,ij)] + K[2NpNh +(2k - l)Np +i, (2n -2)N, +J'l 
Real[KRS(n,k,ij)] - Real[KRS(n,-k,i,j)] + K[2NPN,, +(2k - l)N, +i, (2n - l)N, +JI 

The development for the KSR terms proceeds exactly the same way to place these elements in 
the upper right corner of the matrix in equation 58. The result is given below 
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Real[KSR(n,k,ij)] + Real[KSR(n,-k,ij)] -+ q ( 2 k  -2)Np + i  , 2 N , N ,  +(2n - 2 ) N p  +j] 
-Imag[KSR(n,k,ij)] - Imag[KSR(n,-k,ij)] -+ K [ ( 2 k  -2)NI, + i  , 2NpN, +(2n - l)Np + j ]  
Imag[KSR(n,k,ij)] - Imag[KSR(n,-k,ij)] + K [ ( 2 k  - l ) N p  +i, 2 N p N ,  +(2n -2)Np +j1 

Finally, for inversion of equation 58 (or 61), we need to describe the construction of the 
upwash vector W(p)  in terms of the rotor and stator upwash boundary conditions in equations 
55 and 56 and the interpretation of the rotor and stator loading components LR(nj) and LS(n,j) 
in terms of the loading vector Uv). The upwash vector is constructed as follows 

(70) 

Real[KSR(n,k,ij)] - Real[KSR(n,-k,ij)] -+ q ( 2 k  - l)Np +i, 2NpN, +(2n - l ) N p  

Real[WR(k,i)] + W[(2k - 2 ) N p  +i] 
Imag[WR(k,i)] + W(2k - l)Np +i] 
Real[WS(k,i)] + W [ 2 N p N h  + ( 2 k  - 2 ) N p  +i] 

Imag[WS(k,i)] + W[2NI,Nh +(2k-l)N, +i] 

and inverting the matrix and computing the L vector, the rotor and stator loads are constructed 
from L(v) according to 

(72) 

If we only needed unsteady blade loading, we could stop here. However, for acoustic 
application, we are interested in the upstream and downstream pressure waves and their sound 
power. This is the subject of the next section. 

LR(nj) = L[(2n -2)Np +]I + i L[(2n - 1)Np +]I 
LS(nj) = L[2N,Nh +(2n - 2 ) N p  +]I + i L[2N,N,  +(2n - l)Np +j] 

3.5 SOUND PRESSURE AND SOUND POWER FORMULAS 

The preceding sections showed how to find the unsteady rotor and stator loading in a 
coupled fan stage and gave expressions for the transverse velocity components of the waves 
caused by this loading. For acoustic purposes, we need to derive the expressions for sound 
pressure as well. Furthermore, acoustic power desired as a fundamental measure of sound 
generation independent of time and axial and transverse position in the duct. To develop 
formulas for acoustic power, we also need formulas for the axial component of acoustic velocity. 
The expressions for pressure and axial velocity are developed next and then power formulas are 
developed later in the section. 

Sound Pressure and Axial Velocity 

The theoiy of this report develops expressions for acoustic disturbances in three regions: 
Region A extends from the rotor leading edge to upstream infinity. Region B lies between the 
rotor leading edge to the stator trailing edge. Region C extends from the stator trailing edge to 
downstream infinity. Section 3 developed expressions for the transverse components of the 
disturbance velocities in Region B. To  find the acoustic pressure and velocity in Region A, the 
required steps are to 1) find the transverse velocity at the upstream boundary of Region B, 2) 



apply the transmission coefficients developed in appendix D to jump to the transverse velocity 
in Region A, 3) apply Smith's equations (equations 6 and 7 herein) relating pressure and axial 
velocity to transverse velocity to find the desired quantities. Acoustic pressure and velocity in 
Region C are found by the same method. 

Waves in Upstream Region 
We start with the stator waves given by equation 27. We select only the upstream-going 

waves since definition of the transmission coefficients is based on them. At the rotor leading 
edge, F=O+, 

n=l  k=-m j=1 

To find the corresponding value just across the inlet actuator disk at X = O ,  we apply the 
definition of the transmission coefficient in equation 16 (and in appendix D) to find 

Now we define 
- 

KSUP(n,kj)  = (KSZ e - ' a l f l k x s  + V S l )  T1,(n,k) 

and insert the axial wavenumber exponential to find v4 at any upstream location 

o oo N p  
V4="a c c c Pnk e i (Wnk +. KSUP(n ,k j )  x LS(nj) 

The working form for this is obtained by performing the j-sum and defining 

NP 
LSUP(n,k) = c KSUP(n,k j )  x L S ( n j )  

j=1 

so that 

m m  - 

(75) 

(77) 

As mentioned above, equations 6 and 7 provide the connection from the transverse velocity 
component to the axial component and the pressure. When these are applied, we find 

and 
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I where we have defined 

Equations 79 and 80 are the desired forms for the axial velocity and pressure in the upstream 
region caused by stator loading. Derivation of the corresponding forms for waves from rotor 
loading is similar and leads to the following results. 

l and 
m m  - 

I Permutation of the n and k indices (in comparison with equations 79 and 80) arises from 
viewing the rotor waves in the stator coordinate system. This is an important aspect of the 
kinematics of blade row interaction and is discussed in detail in appendix A. The definitions of 
LRUP and KRUP are similar to those for LSUP and KSUP above: 

i 
I 

NP 
LRUP(n,k) = KRUP(n,kj)  x LR(n j )  

j = l  

(84) 

and 

KRUP(n.,kj) = (KRI + V R l )  T14(k,n) (85) 

The total acoustic pressure in the upstream region, of course, is the sum of equations 80 and 83. 
By noting that TLy appears in equation 75 but not in equation 85, it can be seen that the phase 
difference between the rotor and stator waves associated with axial spacing is accounted for and 
thus that interference effects associated with rotodstator spacing are included in the theory. 

Waves in Downstream Region 
This dei-ivation is similar to the one just presented, but  slightly more complicated because 

the jump between regions is not at Z=O and because both pressure and vorticity waves impinge 
on the downstream actuator disk. From equation 28, the downstream-going waves from the stator 
are 
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at the exit plane X = Xe-. The definitions for the transmissions coefficients T28 and Tj8 from 
Equations 17 and 18 are applied to find the transverse velocity in the pressure wave at X = Tee' 
and the x-wavenumber exponentials are added to find the velocity anywhere downstream of the 
stator actuator disk. 

Now, by defining 
- - 

KSDN(n,kj)  = (KS2e  - i a2nkXs  + VS2)r ia2n'r T 28( n,k) - - 
+(KS3e  -ia'nkX,y +VS3)e  ia'fl'p T 38( n,k)] 

and 

(89) 
NP 

LSDN(n,k) = KSDN(n,kj)  x LS(n j )  
j = l  

the transverse velocity for the pressure wave in the downstream region can be written 

n=l  k=- -  

Again by applying equations 7 and 8, the axial component of the acoustic velocity and the 
acoustic pressure in the downstream region are found to be 

and 

where Ygnk is given by 
/ 

For the rotor waves the procedure is similar and leads to the following forms for axial 
velocity and pressure 
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and 

where 

and 
- 

KRDN(n,kj)  = (KR2 + VS2) e TZ8(k,n) - 
+ (KR3 + VR3) e 7' 38( k,n) 

(97) 

The above equations for pressure are coded in CUP2D for output on a modal basis and as 
a sum over the modes at each frequency. The pressure formulas and those for the axial velocity 
components are used in the next section to derive equations for acoustic power. 

Sound Power 

Formulas for sound power are derived from Goldstein's (ref. 9) equation for acoustic energy 
flux vector 

I = ( p I P o + ~ ' ~ o ) ( P ~ , ~  +pvJ (98) 

where p , p , and u are the acoustic pressure, density, and velocity and vo is the mean 
velocity of the background flow. We are interested in Regions A and B, where the flow is axial, 
so that u -v,=uU. Then, with p=p/a2 , the flux becomes 

P 
2 

I = (p/p,, + U') (pOu +-vo) 
(1 

Since we are interested in the flux in the axial direction, we form 

(99) 

or 
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I ,  = (1 + M , ) p u  2 + - p  Mx 2 + poaM,u 2 
poa 

This is the instantaneous energy per unit time crossing a unit area element that is normal to the 
x-axis. The power is the time average of I, integrated over the duct cross-sectional area. Since 
the concept of area in a 2D duct is nebulous, we will simply compute a non-dimensional quantity 
equal to the average power per unit area normalized by the ambient value of poa3. The average 
power is then 

I I , = - L  1 2x T 6 T I x d t d e  1 
27c 

Since this is defined to be positive for flux in the x direction, computed values for our problem 
must be positive downstream of the source and negative upstream to represent energy propagating 
away from the source region. 

Upstream Power 
To begin operations with equations 1 0 1  and 102, we need convenient forms for u and 

p .  As stated above, the axial velocity in Region A is given by the sum of the stator and rotor 
contributions expressed by equations 79 and 82. 

i W n k  + a 4 n k x )  u4 = a, Real a4,,k LSUP(n,k) e 

+aa Real a4kn LRUP(n,k) e 

The declaration "Real" has been implicit all along but is shown here explicitly because of the 
need to eliminate it for the manipulations that follow. This is done by changing to double sided 
series in n as follows 

The reader can verify that equations 103 and 104 are equivalent by noting that vnk and a&k 
simply change sign when both indices change sign and by defining LSUP(-n,-k)=LSUP*(n,k). 
The "Real" declaration in no longer needed since the imaginary parts of the upper and lower 
halves of the n-series cancel identically. The key step now is to switch the dummy k and n 
indices in the second line of the equation, yielding 

or, by defining 
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LUP(n,k) = LSUP(n,k) + LRUP(k,n) 

we obtain the simpler form 

n=-w k=-W 

which will be seen to be convenient for manipulation later. 

By a similar argument, the desired form for the upstream pressure is 

Now, consider the expression for the product p4u4=p4ui (because u4 is real) which has be 
averaged over $ and t .  This requires the quadruple summation 

- i [ ( n  -m)B, - (k-q)B21$ x e  e i [ ( n  -m)BIR, +(k-q)lB2R21f 

Averaging over $ involves only the second exponential. That average is zero for each term in 
the series except for the cases where (n-m)BI = (k-q)B, , when the average value is unity. When 
this expression is substituted into the time exponential in equation 109, the result is exp[i(n- 
nz)E,(,rZ,+R,)t]. When this is averaged Over time, the resuit is unity for n=m and zero 
otherwise. Thus, when the m and y sums are perfoimed in equation 109, the exponentials 
vanish and the result is 

where the double overline denotes the average over $ and t. From the symmetry properties 
of the a's, y's, and LUP's, it can be shown upper and lower halves of the n-series are identical 
so that 

3 ,  00 - - 
Y4U4 = 9 a4nk Y4nk LUP(n,k) LUP *(n,k) 

L n = l  k=- 

where the n=O term is omitted because it makes no noise. This is the working form for the 
average of the first term in equation 101. It exhibits the usual behavior that the total power is 
the sum of the modal powers. Also, as required, the result is independent of F and $. 
Averages of the remaining terms in equation 101 can now be written down by inspection. The 
final form for the sound power in Region A is 
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This is the form used in 
following normalization. 

the computer code except that the factor 1/2poan,3 is omitted via the 

For a decibel output, the value is divided by 
purposes 

, arbitrarily, to give positive values for plotting 

PWL = 10 log1() [ - :4 
Downstream Power 

The derivation for power in Region C follows along identical lines. The result is 

where 

LDN(n,k) = LSDN(n,k) + LRDN(k,n) (1 16) 

Normalization for this in the code is the same as for the upstream power, except that the 
downstream conditions pOc and uC are used. 

The theory of this section is coded in program CUP2D. Documentation for CUP2D can 
be found in Volume 2 of this report and includes a source listing, user instructions, and a test 
case. Typical cases for 3 harmonics and 30 panels on each blade row run a few minutes on a 
workstation computer or a 386 PC. 
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SECTION 4 
COMPARISON WITH OTHER THEORIES 

The theory of the present paper adds three effects not included in the Smith theory: blade 
row coupling, frequency scattering, and flow turning. For verification of the theory, it was 
possible to check only two of these effects by comparison with previous work. 

Comparison with Kaji and Okazaki 
Kaji and Okazaki developed a method (ref. 6) to compute the coupled interaction between 

a downstream rotor and an inlet guide vane (IGV) cascade with viscous wakes. Their method 
could treat one harmonic only and did not account for turning of the flow. Since the present 
analysis treats rotor/EGV, rotorhotor, and IGVlrotor interaction, it was possible to make 
comparisons with the earlier Kaji/Okazaki results. (The wake model used here is equivalent to 
that of Kaji and Okazaki and is developed in appendix E.) A sample is shown in figure 8 for 
a case where B,=B, and the gapkhord ratio is the same for both rotor and stator. The 
geometry and flow condition are such that the relative Mach number is the same for both blade 
rows. The curves show the upstream and downstream sound pressure for two rotor spacings as 
relative Mach number varies. This provides 
confidence in the coupling part of the new theory, which is handled differently in the Kaji and 
Okazaki work. 

Agreement of the two theories is excellent. 

Simulation of the Kaji/Okazaki case was as follows. The IGV and rotor blade angles were 
both 30 deg., gap/chord ratios were both 1.0, and the interblade phase angle was zero. Since 
theirs was an unloaded model, this corresponds to a stage with an inlet (and exit) flow angle of 
30 deg. The model of this report does not peimit swirl in the exit flow and therefore the Kaji 
and Okazaki configuration was simulated by running both blade rows as rotors with equal and 
opposite RPMs. By using -Myz = My, = Mx tan30 deg. , the geometry and flow angles were 
correctly represented. The blade numbers had to be equal and were chosen to be equal to 10. 
Conditions were taken to be sea level standard for density and sound speed. 

Comparison with Kousen and Verdon 
For single cascades, a much more sophisticated method has been developed at the United 

Technologies Research Center by Verdon and his co-workers (ref. IO). Their code, called 
LINFLO, starts with a steady flow field from a compressible potential flow calculation and 
computes an unsteady perturbation field due to input waves or blade motions based on a 
linearized, inviscid, unsteady analysis. In a recent paper, Kousen and Verdon (ref. 11) showed 
calculations that provided an opportunity to establish how well the present method represents the 
effect of flow turning. In figure 0 the cascade is excited by a vorticity wave with an interblade 
phase angle and frequency such that i t  is cut on upstream of the cascade and cut off downstream. 
Kousen and Verdon compared this to ;1 no turning, flat plate calculation (equivalent to a Smith 
code calculation) and found that the case with turning increased the upstream response wave by 
a factor of 8.4, or 18.5 dB. Some alterations to the present method were made to represent a 
single flat plate cascade with (or without) turning at the exit. When the Kousen/Verdon case was 
simulated, it was found that the reflected wave was amplified by 10.7 dB by the turning. It was 
concluded for this case that the primaiy effect of the real blades (beyond the flat plate results) 
is reflection of the waves from a region where they cannot propagate and that the simplistic 
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actuator disk model did a reasonably good job of representing the effect. 

Simulation of the Kousen/Verdon case was as follows. In the upstream/downstream regions 
the axial Mach numbers were 0.476/0.450, the swirl Mach numbers were 0.275/0.000, the sound 
speeds were 11 16/1128 ft/sec, and the densities were 0.07631/0.080185 lbm/ft3. Use of B ,  =36, 
B,=57, chord/radius = 0.131, and rotor rotational Mach number = 0.478 produced the correct 
reduced frequency (4.106) and interblade phase angle (2.3 1). To eliminate wave reflections from 
the rotor and inlet actuator disk, KR1, KR2, KR3, R,,, and R,, were set to zero. Finally, 
reflections from the exit actuator disk (representing the mean flow turning) could be turned off 
by setting R,, and R3, equal to zero. 
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SECTION 5 
BEHAVIOR OF THE COUPLED CASCADE THEORY 

& THE MODE TRAPPING PHENOMENON 

In this section, behavior of the new theory is examined using a format similar to that of the 
test data in figure 3 to find to what extent the features of coupling, frequency scattering, and flow 
turning explain the observed behavior. Since the theory is 2-dimensional, we are only looking 
for qualitative behavior at this point; absolute level predictions will have to await a 3D analysis. 
The calculations lead to the conclusion that the high levels of noise at 2x and 3xBPF are caused 
by a mode that reflects back and forth between the rotor and stator, amplifying in level and 
coupling to the upper harmonics. The final part of this section verifies the assertion made during 
derivation of the theory that valid results can be obtained by including only a small number of 
loading harmonics in the coupling equations. 

The cases presented in this section are all in the form of RPM sweeps with mean flow 
conditions representative of the 85 percent radius in the turbofan of figure 3. The mean flow 
values used for the computations, which are given in Table I, were obtained by running a 
standard streamline curvature code. Each column corresponds to one operating condition. For 
the curves to be presented below, My* (the first row) is treated as the independent variable and 
values of the other parameters are found by straight line interpolation on Myl.  

TABLE I - MEAN FLOW CONDITIONS 
a) Upstream of rotor, b) Between rotor and stator, and c) Downstream of stator 

0.672 0.908 

0.269 0.418 

0.32 I 0.440 

0.382 0.5 19 

0.205 0.285 

.02978 .02837 

.03222 .03407 

P O C  .03201 -0338 1 

1065 1080 

1065 108 1 

po - density - lbm/ft3, a - speed of sound - ft/sec 
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0.974 I 1.017 ll 
0.467 1 0.496 II 
0.469 I 0.480 II 
0.544 1 0.546 11 
0.334 I 0.359 

.02767 I .02738 II 

.(I3539 .03647 

1027 1025 

109 I 1098 

1094 1104 



In particular, the reflection and transmission coefficients are computed from the jumps in mean 
flow properties from regions a to b (across the rotor) and from regions b to c (across the stator). 
For comparison with figure 3, note that MyI  is taken as 85 percent of the fan tip rotational 
Mach number. In addition to conditions given by the table, the rotor and stator gapkhord ratios 
were 0.763 and 0.957 and the spacing from the rotor trailing edge to the stator leading edge was 
two rotor chords. There were 38 blades and 72 vanes. Stagger angles follow the mean flow 
according to figure 5 but were generally about 55 deg. for the rotor and 32 deg. for the stator. 
Furthermore, all were run with a wake model equivalent to that in the Kaji/Okazaki work 
(derived herein in appendix E) with a drag coefficient of 0.02 but with all of the wake harmonics 
above BPF set to 0. Thus, excitation of the coupled system is exclusively at BPF and any 
appearance of higher harmonics must be caused by frequency scattering. These conditions apply 
to all cases discussed in this section. 

5.1 EFFECTS OF COUPLING, FREQUENCY SCATTERING, AND SWIRL 

Four RPM sweeps are shown in figure 10 to demonstrate the effects of the new theoretical 
features. The plot at the upper left presents a baseline case and then various effects are "turned 
on" to illustrate their influence. For the cases without swirl, all the mean flow conditions are set 
to the values for the aft duct in the table above. Thus, without swirl, all of the reflection 
coefficients associated with turning of the mean flow are 0. 

Figure 10a shows calculations without swirl for one harmonic only. BPF cuton in the aft 
duct is at a rotor rotational Mach number of 0.80. The first mode to cut on at BPF has order 
m=-34, which is computed from m=nBI-kB, with B,=38, B,=72, n=l,  k=l. The uncoupled 
curve corresponds to results from the original Smith theory (KRS and KSR were set to zero). 
The case with coupling uses theory equivalent to that of Kaji and Okazaki. It can be seen that 
the coupling effect is very weak for this case and could easily be ignored for acoustic purposes. 

Figure 10b was generated without swirl but with coupling and scattering to 2 and 3 times 
BPF included. This is the first case showing excitation at BPF producing noise at higher 
harmonics. Also, note that there is a small amount of noise in the higher harmonics at speeds 
below BPF cuton. This figure does not look at all like figure 3 with its high levels of 2xBPF 
and 3xBPF below BPF cuton. However, above cuton, the scattering effect is not negligible. For 
example, a spectrum at a rotor rotational Mach number MyI  = 0.82 would show 2xBPF and 
3xBPF only 5 dB below BPF. 

Figure 10c shows coupled calculations for one harmonic only, with and without swirl. The 
change here is due mostly to the fact that, in the theoretical model, the cascade stagger angles 
follow the mean flow as indicated by tigure 5. Thus, for the case without swirl, the stator angle 
is 0 deg. and the rotor stagger is typically 60 deg. The extended range of rotational speeds with 
swirl is due to the fact that swirl reduces the relative Mach number at the rotor fig. 5) and 
permits a higher RPM before the rotor relative Mach number reaches unity. The rapid rise in 
the curve for the "with swirl" results from cuton of a second propagating mode (n,k = 1,O) at 
My] = 0.87. 
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Finally, figure 1Od shows calculations with all of the theoretical features included. We see 
that the combination of swirl and coupling produces a substantial increase in levels of the higher 
harmonics, particularly below BPF cuton. In comparing this with the plot of engine data in 
figure 3, we see that, although the plots are not exactly the same, there are some striking 
similarities. At the RPM where BPF cuts on in the interstage area, 2xBPF and 3xBPF rise 
rapidly and are actually higher than BPF when it cuts on in the aft duct. When BPF cuts on in 
the aft duct, the higher harmonics drop substantially. In the intermediate speed range, 3xBPF 
is higher than 2xBPF by about the same amount as in the engine data. These similarities suggest 
that the 2D model embodies the correct physical features to explain the experimental behavior. 

5.2 INTERPRETATION OF RESULTS 

To interpret the results presented in figure 10, it is necessary to understand behavior of the 
reflection coefficients associated with the inlet and exit actuator disks and how they are related 
to modal cutoff ratios. The 1 , l  mode is the first to cut on and we show its behavior in figure 
11. The upper panel relates to the inlet interface and shows R 1 2 ( I , I )  and R 1 3 ( l , l ) ,  which are 
the coefficients for an upstream going pressure wave reflecting into downstream going pressure 
and vorticity waves. Point b indicates cuton between rotor and stator and point u indicates 
cuton in the inlet duct. It can be seen that reflection into the vorticity wave is always weak. 
However, for the pressure wave, the coefficient is of order unity between a and b and is small 
outside. This indicates that a wave travelling from a region where it is cut on to a region where 
it is cut off is reflected with little change in amplitude. The lower panel in figure 11 relates to 
the exit interface and shows R2,( l , l )  and R 3 , ( l , l ) ,  the coefficients for the upstream going 
pressure wave reflected from the downstream going pressure and vorticity waves. Again, there 
is strong reflection for waves traveling from a region where they are cut on to one where they 
are cut off. This is believed to be the dominant reason for the strong reflections shown in the 
Kousen/Verdon(") calculations in figure 9. 

The explanation for the behavior of the upper haimonics shown in figure 10d can be 
explained pictorially with the sketch in figure 12. The top panel relates to the speed range from 
cuton between blade rows to cuton in the aft duct. In this range, the 1,l mode can bounce back 
and forth freely between rotor and stator, but it cmnot  esctrpe. It effectively is trapped in the 
interstage area and builds to high levels as i t  couples to the higher harmonics. The higher 
harmonics then can escape to the aft duct. Thus, i n  this speed range, the excitation of the system 
is BPF of the rotor wakes, hut the only noise escaping from the system is at higher harmonics. 
The lower panel in  figure 12 relates to speeds where BPF can propagate in the aft duct. The 
1,1 mode is no longer trapped so that thc BPF levels between rotor and stator do not amplify 
as strongly and the coupling to the higher harmonics produces lower levels. 

Finally, note that figure 1 0  shows that the combination of coupling and swirl was required 
to produce the effect. Swirl or coupling by itself produced much less dramatic results. 
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5.3 CONVERGENCE WITH INCREASING NUMBER OF HARMONICS 

In the theory derivation of Section 3, the coupling equations were initially written as waveforms 
of upwash with an infinite number of harmonics. Since the coupled system of equations is 
solved numerically, flow tangency can be guaranteed simultaneously at only a finite number of 
harmonics. Thus, the summation over loading harmonic order was truncated at Nh rather than 
running to infinity. Since each loading harmonic on the stator produces an infinite number of 
upwash harmonics on the rotor and vicr vrrm, i t  was not known a priori that this truncation 
would produce acceptable results. The only way to verify correct behavior was to run a series 
of calculations with increasing values of N!r. It was hoped that as more and more harmonics are 
included in the coupling, the influence on the lower harmonics would be minimal. 

Verification of this convergence is shown in figure 13, which is based on the same 
conditions used for figure IO.  The top panel shows predicted aft PWL at BPF for separate 
calculations where 1, 2, 3, 4, and 5 harmonics were included in the coupling. It can be seen that 
near cuton the number of harmonics does influence results but  that levels tend to converge for 
larger Nh. When the next mode cuts on near rotational Mach number M = 0.87, the 
sensitivity to number of harmonics disappears. It seems that the upper harmonics are taking 
energy from only the rn = 38-72 = -34 mode. 

y! 

The second panel from the top in figure 13 shows results for 2xBPF. Here the sensitivity 
to Nh is minimal. The lower panels in the figure indicate that the situation improves at higher 
harmonics. Thus, we have given an example where results for the lower haiinonics are not 
strongly affected by the number of harmonics included in the coupling. Although all of the cases 
checked so far exhibit this behavior, this does not constitute proof of convergence. A probable 
explanation for the convergence is that loading response diminishes with increasing frequency. 
Also, interference between waves from adjacent panels increases with increasing frequency. 
However, until a more rigorous theoretical explanation can be provided, we cannot be sure that 
convergence will always occur. 
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SECTION 6 
PARAMETRIC STUDIES 

The calculations of the previous section were chosen to provide a physical understanding 
of noise generation in a coupled environment. Geometry and operating conditions were the same 
for all of the figures and are representative of modern turbofan design; in particular, there were 
more vanes than blades. In this section, we explore the new theory via additional computations. 

First, in figure 14 we compare upstream and downstream harmonic powers from the same 
calculation. The top panel in the figure is the same as in figure 10d and is the "base case" for 
variations in the remaining figures. The forward PWL's shown in the lower panel exhibit 
behavior similar to the aft noise but with cuton of BPF at a slightly higher rotor speed because 
of differences in inlet and exit mean flow conditions. Note that the forward noise levels are 
much lower than the aft noise. This is believed to be due to the fact that the basic noise source 
is the stator and its noise must propagate upstream through the rotor. Note also that the forward 
levels are so low that they are likely to be masked by other sources, such as inlet distortionhotor 
interaction in a real engine environment. 

The top pail of figure 14 also indicates the cuton speed for relevant modes via the arrows 
along the bottom grid line. For example, the notation 1,l b at rotational Mach number MyI 
= 0.665 indicates that the n,k = 1,l mode cuts on at this speed in region b (between rotor and 
stator). In the figure it can also be seen that the same mode doesn't cut on in the aft duct (region 
c) until Myl reaches 0.800. Thus, the 1,l mode is trapped between these rotor speeds. The 
figure also shows that mode 1,0 cuts on at M,,, = 0.870, accounting for the rapid rise in BPF 
at this speed. 

Because of the motivation to understand the importance of frequency scattering, all of the 
computed noise so far in this report has been excited by the BPF harmonic (fundamental) of the 
rotor wake; the upper wake hai-monics have been set to zero. In the lower portion of figure 15, 
the wake harmonics are computed in the normal way from the wake formulas in appendix E. 
Thus, there are three wake harmonics and three harmonics in the coupling calculation. By 
comparing with the base case in the upper portion of the figure, it can be seen that BPF and 
3xBPF are only slightly affected, however, 2xBPF changes considerably. Since this is a linear 
analysis, superposition applies: the 2xBPF oscillations must be caused by interference between 
noise caused by the wake upper harmonics and noise caused by scattering from the fundamental. 
Note that the overall noise is not increased much by including the upper wake harmonics; that 
is, the upper noise harmonics are caused primarily by the scattering phenomenon and not by the 
better known process whereby each wake harmonic couples only to the same noise harmonic. 
This behavior, of course, depends on the wake properties so that no universal conclusions can 
be drawn. 

The cases above were all for geometry with 38 rotor blades and 72 stator vanes, that is for 
a typical cut off design. For these, the first mode to cut on at BPF has order m=-34, (computed 
from m=i?BI-kB, with n= l ,  for BPF, and k = l ,  for the first wake spatial harmonic). The 
significance of the negative mode order is that this mode spins counter to the rotor direction, and 
the swirl direction, and therefore cuts on earlier in  the swirl region than in the aft region. Thus, 
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the typical behavior that we have seen above is high levels of 2xBPF and 3xBPF when BPF is 
cut off. In figure 16, we compare this base case for 38 blades and 72 vanes with calculations 
for the same blade count but 38 and 26 vanes. Blade row solidity and rotohtator spacing are 
the same for all three vane counts. For B,=38 and 26, BPF is cut on throughout the speed range 
of interest and we do not find any speed-range where the upper harmonics dominate, however, 
there is considerable frequency scattering. (All portions of figure 16 were computed with only 
the wake fundamental harmonic for excitation.) Now, for the 38-vane case, note the rapid rise 
in the 3xBPF harmonic near Myl=0.72. This is caused by the 1,2 mode which cuts on at a 
rotor rotational Mach number of 0.72 between blade rows and at 0.87 in the aft region. As 
denoted by the *'s above the 1,2 b and 1,2 c notations, this is another trapped mode. Here 
is a case where BPF noise is cut on, for k = l ,  but there is considerable influence on a higher 
harmonic due to another BPF inode which is cut off and counter rotating. For the 26-vane case 
at the bottom of figure 16, similar remarks apply for the 2xBPF and 3xBPF harmonics. In this 
case the 1,3 mode is trapped between rotor speeds 0.750 and 0.915. Thus, we find that 
frequency scattering and mode trapping can have a significant impact on the noise even for cut 
on designs. 

The final set of calculations is for variations in rotor/stator spacing. Figure 17 compares 
aft power levels for axial spacings of 1.0, 1.5, and 2.0 rotor chords between the rotor trailing 
edge and the stator leading edge. There is veiy little difference in the three sets of curves except 
for a slight decrease for increased spacing. Since all of the curves go down as a family, this 
appears to he due simply to the weaker wake excitation as spacing increases. (The wake 
formulas are given i n  appendix E.) At the low speed end of the curves, note that the slope is 
steeper for the greater spacing. Noise at rotor speeds below 0.675 rotational Mach number is 
caused by excitation of the rotor by a cut off mode from the stator. Thus, at a given RPM in this 
low range, noise will depend strongly on rotodstator spacing because of the exponential decay 
of the cut off mode. 
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SECTION 7 
CONCLUDING REMARKS 

An analytical model has been developed for rotodstator interaction by extending the 
industry-standard 2-dimensional unsteady cascade theory of S. N. Smith to include 1) unsteady 
coupling of rotor and stator, 2) frequency scattering due to relative motion between blade rows, 
and 3) tuining of the flow due to the mean loading on the blade rows. Unsteady loading is 
handled rigorously by collocation at many panels simultaneously on each cascade for several 
harmonics. The effect of finite mean loading is treated simplistically via actuator discs that turn 
the flow at the rotor leading edge and straighten it at the stator trailing edge. For typical 
turbofans designed for cutoff, there is a speed range where the fundamental mode at BPF can 
bounce back and forth between the rotor and stator but cannot escape to the inlet or exit ducts. 
In this range, the mode amplifies and couples to the higher harmonics, producing a significant 
amount of noise at these frequencies. This mode trapping mechanism appears to explain 
observations in engine data where the source of excitation is at blade passing frequency but the 
spectrum is dominated by 2xBPF and 3xBPF. 

The computational method requires truncating the Fourier series that represents the blade 
and vane loading. It was demonstrated that, when three or four harmonics are included in the 
coupling, noise at the lower harmonics is predicted with reasonable accuracy. 

Limited verification of the theory was possible by comparison with earlier work of Kaji and 
Okazaki, although their analysis did not include frequency scattering or turning of the flow. By 
comparison with calculations from the LINFLO code for loaded, isolated cascades, it appears 
chat turning of the mean flow is the major feature of real cascades (as opposed to flat plates) that 
influences noise. 

Although unsteady coupling produces frequency scattering under any conditions, swirl is 
the critical ingredient that produces the mode trapping and amplification. Scattering into the 
upper harmonics can be significant for both cut off and cut on designs. It is concluded that any 
further modeling of r o t o r h t o r  interaction for noise calculations should include the features of 
coupling, frequency scattering, and flow turning. 
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APPENDIX A 
KINEMATICS OF ROTOWSTATOR INTERACTION 

The objectives of this appendix are 1 )  to find, via a kinematic analysis, the form of all of the waves 
that can result from rotodstator interaction, 2 )  to relate the interblade phase angle notation of cascade 
theory to the spinning mode order notation of duct acoustics, and 3) to develop one system of indices for 
the transverse wavenumbers that can be used for both rotor and stator waves. 

Kinematics of the interaction are deteimined by a part of the exponential in equation 1 which we call 
the kinematic phase 

w = p y  +oz 

In the following, we study the properties of y~ for the rotor and stator and relate it to the spinning mode 
notation of fan acoustics. 

Consider the two blade rows shown in figure 5.  For generality, it is assumed that both blade rows can 
rotate in either direction. To simplify the nomenclature, the front blade row will be called the "rotor" and 
the rear blade row will be called the "stator"; however, in reality, the analysis can treat IGV/rotor and 
rotodrotor configurations as well as the rotor/EGV configuration indicated by the nomenclature. There 
are three coordinate systems with common values for x: the x,y system is fixed in the duct; the x,yl 
system is locked to the rotor; and the x,y2 system is locked to the stator. The rotor is shown with 
positive stagger angle 0, in conformity with Smith's nomenclature, but for the rotor/EGV geometry 
emphasized in this report, the rotor stagger angle will be negative. Blades are aligned with the mean flow 
direction so that stagger angles are determined by the axial velocity U the swirl velocity V, and the 
angular speeds according to the velocity triangles in figure 5. The constant R used below can be 
considered the effective radius of a thin annular duct and is the reference used throughout the paper for 
non-dimensionalizing wavenumbers, chords, and distances. The y's and the cylindrical coordinate angles 
are related by 

Y = R 0  
Y1 =R01 
Y2 =R02 

4) =4)1 +Q,f 

4) = 02 +Q$ 

0 2 = 4 ) 1 + Q t  

The coordinate systems are related to each other by 

(A-2) 

(A-3) 

where 

Because the Smith equations were developed in a coordinate system locked to a blade row, the 
discussion below will jump from stator coordinates to rotor coordinates and back again. Implications for 
frequencies in the duct-fixed system will he discussed afterwards. Starting in the stator frame, we can 
see that the relative motion of the rotor with B,  blades will induce loading harmonics of order nB, with 
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frequencies n B l n .  The resulting kinematic phase can thus be written 

v, = P , y , + n B P  (A-5) 

Inserting equation 2 ,  the relation between blade gap and blade number, S2=2xWB,, and the conversion 
to cylindrical coordinates via equation A-2 leads to 

ys = (-B2 G S  +kB,)$,+nB,Rt 
21E: 

(A-6) 

Now, to find the interblade phase angle for the stator os, compare the condition just analyzed with that 
when the rotor has advanced one stator vane gap, that is by angle 2 d B 2  in time 2 d B 2 R .  It can be seen 
that the geometry will be identical to figure 5 but with the y 2  (or $,) axis shifted. We conclude that v,, 
with $, + @, + 27t/B2 and t + t + 27dB2R, is the same as v s i n  equation A-6. By equating these 
expressions for y,, we find 

6, = -2nnB,/B2 (A-7) 

for the interblade phase angle, that is the difference in loading phase on two adjacent stator vanes at 
harmonic n. Inserting this into equation A-6 gives the expression familiar from duct acoustics 

which indicates modes of order nB1-kB2 (for all k )  appearing at frequency n B I R  and spinning at speed 
[nB,/(nB,-kB,)]R in stator coordinates. 

A similar derivation for rotor loading harmonics of order n and frequency nB2Q leads to interblade , 

phase angle 

or = +2nn B,IB, (A-9) 

where the + sign appears because the relative motion of the stator is opposite that of rotor. With these 
results, the kinematic phases for rotor loading haimonic n are 

vr = - ( k B ,  -nB,)$,+nB,Qt 

for all k. 
We now define the mode order notation for the stator 

and take advantage of the symmetry with the rotor waves to note that 

~ PrR = Pkn 

(A- lo) 

(A- 11) 

(A-12) 



Then the kinematic phases for thc stator (in the stator coordinate system) can be written 

W.y = Wn/( = Pnk$2 +nB1 Q t  

Wr = P ~ $ ~ + I z B ~ Q ~  

and for the rotor (in the rotor coordinate system) 

(A-13) 

(A- 14) 

A revealing step now is to find the rotor wave properties in the stator coordinates by substituting Q1 
= $2 - Rt into equation A-14. The result is 

~ r = P / . 3 $ 2 + k B I Q t  (A-15) 

which is to say 

w, = vkn (A- 16) 

Since indices n and k take on all integer values, comparison of equations A-13 and A-16 shows that 
the set of rotor waves and the set of stator waves are the same set. Thus, we have found all waves 
generated by coupled rotorlstator interaction (equation A- 13); they are the same set found in uncoupled 
analyses such as that of Tyler and Sofiin (ref. l)!  Furthermore, comparison of equations A-14 and A-15 
shows that the roles of the n and k indices switch when the same wave is viewed in different frames. 
In the rotor frame, k is the cascade index and, in the stator frame, it is the time harmonic index. 

Study of the above equations also shows the origin of frequency scattering. equation A-14 gives the 
form in the rotor frame of the waves caiiscd by rotor loading. A single loading harmonic n produces 
the waves indicated where k takes on all integer values. That is, one loading harmonic produces waves 
at thc same frequency but with many mode orders. Equauorl A- i5  represents these same waves in the 
stator frame and shows that the waves caused by a single haimonic (n) of rotor loading appear at all 
harmonics (kB,Q) of blade passing frequency in the stator frame. 

Kinematic phases for rotor and stator waves can also be expressed in duct-fixed coordinates via 
equation A-3. This result plus the other results derived above are summarized below. 

Waves due to stator load harmonic 11 and cascade index k 

Pn/($2 + J ? B , Q f  in stator frame 
v , ~  =vnk = P $ +kB,Qt in rotor frame 

b ~ ~ ~ + ( n B I Q l  - kB2R2) t  in fixed frame 

Waves due to rotor load harmonic IZ and cascade index k 

In code CUP2D the Pnk’s are computed in subroutine ALFBET. 
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APPENDIX B 
AXIAL WAVENUMBERS AND THE CUTON CRITERION 

The general 2-dimensional waves studied in this report are in the form of complex coefficients 
multiplied by the exponential exp[i(ax+py+ot)]. Appendix A showed how the frequency o and 
transverse wavenumber p are related to the kinematics of the problem, that is to the numbers of blades 
and the rotational speeds. The axial wavenumber a was derived by Smith from aerodynamic analysis 
as a function of p and 0. Its form determines whether waves propagate or decay in the axial direction. 
In this appendix, we find non-dimensional forms for the axial wavenumbers that can be used for both rotor 
and stator waves. We also evaluate the cuton criterion and deal with a sign choice for the upstream and 
downstream going pressure waves. 

In appendix A we saw that the kinematic phase, w = p y  +at took on different forms in the duct-fixed 
and rotating coordinate systems. The axial wavenumbers, however, must be the same in any of these 
coordinate systems. We choose to evaluate them as related to stator waves in the duct-fixed frame. The 
form for the rotor waves will be found simply by permuting indices using the principles derived in 
appendix A. Consider first the wavenumbers for the pressure waves given by equation 4 of the main text 

(B-1) 
U ( o + v p ) + n / ( w + v p ) 2 - ( u  2 -u 2 2  )p  

a s  1,2 = u2-u2  
From equation A-17, the frequency in the duct-fixed system is 
dimensional form of this as 

o = n B l R , - k B Z R 2 .  We define a non- 

Rnk = (nB,R1 -kB2R2)Rla  = nB,My,  -kB2My,  03-2) 

where My] and My2 are the rotational Mach numbers of the two blade rows. We further define the 
axial and swirl Mach numbers to be 

M ,  = U/a 
M, = Vs lu 

(B-3) 

Substituting these plus the mode order definition from equation A-1 1 into equation B-1 gives results in 
the following form for alnk and a,nk for the stator pressure waves 

03-41 

The sign choice 
forms for alrlk 

Equation B-4 

is discussed below. For the rotor, it is easily shown that a,R = al,2,zk permitting the 
and a2nk defined in equation B-4 to be used for both the rotor and stator. 

. contains the desired information regarding cuton. When the square root is real, the 
wavenumbers (upstream and downstream) are real and the waves propagate undiminished. When the 
square root is imaginary, iax in the exponential has a negative real part and the waves decay. Thus, the 
argument of the square root supplies the cuton criterion 

03-51 
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This is more conveniently expressed in terms of the cutoff ratio 5 , which is defined as follows 

which must be greater than zero for a mode to be cut on. This means that, for a mode with Pnk lobes, 
the frequency, that is Qrzk, has to be "high enough", to satisfy equation B-6, for propagation. If Pnk is 
positive, then the effect of swirl is to lower the RPM for cuton (assuming Ms > 0). For fans designed 
for cutoff, that is with B ,  > B ,  this will he the case because the k = 1 mode is the first to propagate 
at BPF so that Pllk = - (nB,-kB, )  = -(B,-B2) = B,-B, A). Study of equation A-8 and the following text 
reveals that this condition corr&ponds to the case where the mode is spinning in a direction opposite to 
the swirl, that is the velocity of the inode relative to the fluid is increased by the swirl. 

The sign choice in equation B-4 is made from physical reasoning which is different for decaying and 
propagating waves. For decay, the requirement is simply that the waves diminish to 0 as x + +-. For 
progagation, we require that the wavelength (reciprocal of a) in the upstream region be smaller than the 
wavelength in the downstream region. The working forms for the axial wavenumbers are summarized 
below using the definitions 

which apply in the region between the rotor leading edge and the stator trailing edge. The wavenumbers 
for the vorticity waves are aiso given in teiins of quantities already dcfined. 

Propagating pressure waves (E<@ 

F>O 

F<O 03-91 
1 -Mx" 
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I Decaying pressure waves (E>O) 

Vorticity waves 

(B-10) 

(B- 1 1) 

As a result of nomenclature developed in appendixes A and B, convenient forms can be used for the 
exponential exp[i(ax+Py+ot)]. For the upstream pressure wave caused by stator loading harmonic of 
order n, the exponential is exp[i(al,l@+yfilk)], where k is the cascade index that takes on all integer 
values. Formulas for yfnk valid in all coordinate systems of interest are given in equation A-17. For the 
upstream pressure waves caused by rotor loading harmonic of order n, the exponential is 
e ~ p [ i ( a ~ & + ~ y ~ ) ] ,  where y f b z  is given in equation A- 18. For downstream waves, change the 1 in the 
a subscripts to 2's. 

The axial wavenumbers derived above apply directly to the swirl region between the rotor and stator. 
For the region upstream of the rotor, the notation is continued with q n k  for the upstream- and 
downstream-going pressure waves. Downstream of the stator, a8,]k and agnk apply to the downstream 
going pressure and vorticity waves. To apply the formulas above, set M,y=O and use the axial Mach 
number Mx appropriate for the region. Also, because Qllk is based on the speed of sound in region 
b, this must be ad-justed for the other regions. The results are 

for region a and 

for region c. 

In code CUP2D the a's are computed i n  subroutine ALFBET 
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APPENDIX C 
COMMON FORMS FOR TRANSVERSE VELOCITY COMPONENTS 

/ /  In reference 7,  Smith derives expressions for v1 , v 2 ,  and v; the transverse velocity of 
the upstream-going pressure wave, downsteam-going pressure wave, and vorticity wave caused 
by a unit loading element. The axial velocity and pressure are then computed from the v”s. 
In this appendix, we apply the non-dimensionalizations of this report and derive forms for these 
transverse velocity components that can be applied in the coupled cascade code CUP2D to both 
the rotor waves and the stator waves. 

Starting with pressure waves from the stator, we apply Smith’s equations 23 and 28 to find 

which is written directly for decaying waves. The upper/lower signs apply to the up- 
/downstream-going wave. By reproducing Smith’s derivation, it can be shown that the correct 
interpretation for the square root for propagating waves gives 

h, p cos e, 

/m / 

where 

A, =hi+b2 +2h2fisine2 (C-3) 

The subscripts on the right side have been added to identify waves caused by stator (blade row 
2) loading waves. Mr2 is the relative Mach number at the stator. The reduced frequency and 
transverse wavenum ber are 

n B ,  (a, - q c ,  

w2 
h, = 

and 

In terms of the dimensionless quantities C2 = c,/R and Pnk = PR, the reduced frequency can 
be rewritten as 
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h, = n A,;, 
where 

and where My,=RIWu and M - Q f l u  are the rotor and "stator" rotational Mach numbers. 
(Recall from appendix A that this analysis applies to counter rotation systems; however, for 
convenience, the downstream blade row is called the stator.) Now, the normalized velocity 
components for the upstream-going pressure waves can be written 

Y2-  

and for the downstream-going pressure waves 

/ Normalization by Pnk is needed for cases when Pnk = 0. In these cases, vI / P n k  is still defined 
and is needed to determine the axial component and the pressure from equations 7 and 8. In 
equations C-8 and C-9 the complex square root is defined by 

for propagation 

and 

E, = Pi/( - Mr; A, 

- A ,  2 2  2 
A, = n A, + ptlk +2n A, Plzksin 8, 

(C- 10) 

(C- 1 1 )  

(C- 12) 
L 

c2 

For the vorticity wave, Smith's equations 24 and 28 give 
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2 h2 + f3h2sine2 

A2 
v i  = 

The same procedure used above leads to the normalized form 

(C- 13) 

(C- 14) 

The above derivation applies to waves from the stator caused by loading harmonics of order n. 
For rotor waves associated with rotor loading harmonic n , the derivation proceeds along the 
same lines but with subscripts 2 (on the right hand sides of the equations above) replaced by 1’s 
and Pnk replaced by Pk,,. The result is that common forms can be writted for the vs as 
follows. 

with 

I v,=- = - [ -n-nAsine + n A pcos 8 
ROOT P 2A 

I - 
V I  1 1 -  

v2ET=-  + p + n A s i n e  + P 2A\ ROOT ) 

- 
A = n 2 h 2 + p 2 + 2 A p s i n 0  

E = p2 - A(M, / cos 

(C- 15) 

(C-16) 

(C- 17) 

(C- 18) 

(C- 19) 

(C-20) 

Interpretation of the above notation for waves caused by either rotor and stator loading at 
harmonic n is given in the table below. 
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STATOR ROTOR - 
a: a 3 n k  a3kn 

P: Pnk Pkn 

0 :  02 01 

- 

In code CUP2D, V l ,  V2, and V3 are computed in subroutine GETVS using equations C-15, C- 
16, and C-17. 
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APPENDIX D 
REFLECTION AND TRANSMISSION OF WAVES AT ACTUATOR DISKS 

In this report the effects of mean blade and vane loading are to modify the mean flow 
environment in which the acoustic waves propagate. Thus, the rotor turns its axial inflow in the 
swirl direction and the stator straightens the flow. Blade loading is considered the superposition 
of a mean loading component and the unsteady loading. Unsteady loading is distributed over the 
blade chords and produces small flow perturbations; however, the steady loading can be large and 
affects the wave propagation properties. Since the steady loading by itself does not make noise 
with subsonic rotors, we consider only its effect on wave propagation. For simplicity, the mean 
loading is concentrated in two actuator disks; one at the rotor leading edge and the other at the 
stator trailing edge. Smith’s theory can be applied in any region where the mean flow is 
constant. 

To treat the environment sketched in figure 7, we need to establish the boundary conditions 
(or jump conditions) at the disks. This done in this appendix by deriving reflection and 
transmission coefficients for waves incident on the two disks. As shown in the figure, the 
upstream-going pressure wave, vl can transmit a pressure wave v4, and can reflect pressure 
and vorticity waves v2 and v3. Similar comments apply at the exit actuator disk. Boundary 
conditions are derived by applying conservation of mass, axial momentum, and transverse 
momentum at the disks for each type of wave on a mode by mode basis. These lead to reflection 
and transmission coefficients as defined in equations 16, 17, and 18. 

Horlock (ref. 12) in his book on actuator disk theory gives the (unlinearized) 2 dimensional 
conservation equations as follows 

P l U l  ‘ P 2 9  continuity 0 1 )  

- L  cosa,, +plul VI = p2u2v2 transverse m omen tum 

axial momentum 

(D-2) 

(D-3) L sina, +PI + p I  u ,  2 = p 2  +p2u; 

where the definitions for the p’s, u’s, and v’s are standard. The subscripts 1 and 2 are 
Horlock’s and apply to conditions on the two sides of the disk in the above equations only. They 
should not be mistaken for 1 and 2 subscripts elsewhere in this report. The terms with the L’s 
represent axial and transverse mean loading on the disk. These terms will be seen to drop out 
of the analysis via the linearization that separates steady and unsteady effects. In the following, 
the procedure is to linearize the continuity and momentum and equations, express the fluctuating 
quantities in terms of pressure and velocity components, and then apply the notation from Smith’s 
report to represent each wave by its transverse velocity component. As indicated by Figure 7, 
there are three interactions to be considered, each involving an input wave and three resulting 
waves. For instance, at the upstream interface, the input wave vI produces the reflected waves 
v2 and v3 and the transmitted wave v4. Thus, for these four waves, linearized versions of the 
three equations above can be used to express the resulting three waves in terms of the input 
wave. 
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Upstream-going Pressure Waves 

In figure 7 the flow field is divided into regions a, b, and c. In this section we consider the 
jump condition at the interface between region a and region b starting with the continuity 
equation. 

Continuity Equation 
Equation D-1 can be expressed in terms of the mean and fluctuating components as follows. 

from which the first order unsteady terms give 

The mean flow quantities pa, pb, U,, and ub are considered known constants for the analysis. 
In order to deal with pressure rather than density for the fluctuating quantities, we apply p = pa2 
with the result 

In, the upstream region, only the upstream-going wave exists. For axial velocity and pressure, 
this can be expressed in Smith's notation as follows. 

where the remainder of the exponential, exp[i(ot+py)], is implied and is the same throughout the 
field for each mode/frequency. Between the disks, all 3 waves exist as expressed by 

Substitution of equations D-7 and D-8 into equation D-5 gives the relation between the unsteady 
pressures and the unsteady axial velocities 

at the inlet interface (GO). Now equations 7 and 8 from the main text can be applied to express 
this in terms of complex amplitudes of the transverse velocity components as follows. 
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(D- 10) 

This can be non-dimensionalized by multiplying numerators and denominators by the effective 
radius R. The result is 

- - - 
c4 v4 = c, v, 'C2 v2 +c3 v3 (D- 1 1) 

where we have defined 

(D-12) 

and 

We define reflection and transmission coefficients as in equation 16 of the main text 

These allow equation D-1 1 to be written in the following 2 foims - - 
c4v4 = ( C ,  +C2R12 +C3R13) v, 

(D- 14) 

(D- 15) 
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and 

(D-  16) 

which will be used later when the momentum equations have been applied. 

Axial Momentum Equation 

equation. Equation D-2, in terms of steady and fluctuating components becomes 
This section proceeds along the same lines as the derivation above from the continuity 

After expanding this and eliminating the unsteady densities with p = p / a2, the first order 
unsteady equation is found to be 

As anticipated above, L has dropped out and need not be specified. (The eflects of L are seen, 
however, through the mean flow parameters.) The same procedure followed above in arriving 
at equation D-1 1 lead to 

(D-  19) 

(D-20)  

The reflection and transmission coefficients of equation 16 produce the final results of this 
section. 

and 

(D-2  1) 

(D-22)  

These will be used to find the foims for R,,, R,,, and TI4 at the end of the next section. 

Transverse Momentum Equation 
In teims of steady and fluctuating parts, equation D-3 becomes 
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Note that in the inlet region the transverse velocity Va = 0 and in the swirl region vb = Vs. 
Then, by the same procedures used above, the first order unsteady equation is found to be 

With the same definitions used above, this becomes 

with 

In terms of the reflection and transmission coefficients 

and 

(D-25) 

(D-26) 

(D-27) 

(D-28) 

Coefficients for Inlet Disk 
The preceeding equations have been derived in a form convenient for the elimination - of the - 

Vs. For instance, division of equation D-15 by equation D-21 eliminates V, and V4. 
Continuing this technique leads to equations that can be solved for the inlet transmission and 
reflection coefficients with the following results. 

- 

- EQES 

E ,  Es - EzE4 
4 2  = 

ElE3-EOE4 '" = E ,  Es -E2E4 

El ES - E6 ' 9  

E4E9 - E l  El 
T14 = 

(D-29) 

where the E coefficients are dekined in terms of the previously defined C's, Fs,  and G's as 
follows. 
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(D-30)  

Downstream-going Pressure Waves at Exit 

For waves reflected at the stator exit actuator disk, the derivations are similar to that for the 
inlet. The major difference is that exponentials containing x do not vanish as they did at x=0. 
For later convenience, the exponentials are absorbed into the reflection and transmission 
coefficients, as will be seen below. As indicated by figure 7 for x=xe, a downstream-going 
pressure wave v2 reflects an upstream-going pressure wave vI and transmits a pressure wave 
vs and a vorticity wave v9. Coefficients for these processes are derived next. 

Continuity Equation 
By analogy with equation D-6, the linearized continuity equation is 

' b  uc- 
Pbib  +T Pb = Prir '2 p c  

" b  c 

(D-3  1) 

Application of equations D-8 and similar equations for region c at x=x, leads to 

- ut,- - ia2xp ia8xp - ia9$D-32) 
(PbuI ' T P I ) ~  i a 'xp+(PbU2+-P2) '  2 + (P,U9) I? 

" b  ' b  

As in the previous section, equations 7 and 8 from the main text are used to express this result 
entirely in terms of the transverse velocities. Then, with the same noimalizations used above, 
we find 

(D-33) 

where C, and C, - have already been defined, 
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and 

(D-34) 

(D-35) 

The transmission and reflection coefficients are defined with the axial exponential included 

(D-36) 

When these definitions are applied to equation D-33, the following two equations can be derived 

(D-37) 

for use below. 

Axial Momentum Equation 

Proceeding along lines similar to the above derivations for the axial momentum equation, we 
define 

and use the coefficients defined in equation D-35 to establish 

(D-38) 

(D-39) 

which also will be used shortly. 
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Transverse Momentum Equation 

Here we define 

From which it follows that 

(D-40) 

(D-41) 

Now equations D-37, D-39, and D-41 can be manipulated to find the desired coefficients as 
fQllOWS 

ElSE16 -E14E17 

-E10E17 

-E8E13 

R21 = 

T28 = 
EinEi3 -E1 1 E12 - -  

-E8 El, 

ElOE13 -E11E12 
T29 = 

where 

(D-42) 

(D-43) 

Vorticity Waves at Exit 

For this interaction, the derivation is the same as for the pressure wave at the inlet except the 
input wave is different. We quote only the results. The reflection and transmission coefficients 
are 
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-E17 
R31 = 

E12E1S -E10E17 

”’ = E,, E12 -EloE13 

E10E19 -E12E18 

EIO E 17’- E l  2 E l  5 

EllE21 -‘%E20 

T39 = 

(D-44) 

where 

(D-45) 

and where the C’s, F‘s, and G’s and the rest of the E’s have already been defined. 

This completes derivation of the reflection and transmission coefficients for waves impinging 
on the actuator disks. The coefficients are given in equations D-29, D-42 and D-44 in terms of 
coefficients defined by equations D-13, D-20, D-26, D-35, D-38, D-40, D-30, and D-43. These 
are all computed in subroutine RTCOEF in the code CUP2D. 
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APPENDIX E 
FORMULAS FOR VISCOUS WAKES 

In the main text, the method of inverting the matrix equations for the coupled loading was 
described in conjunction with equation 56. This equation requires a vector of upwash velocities 
W S ( n , i )  at the stator caused by viscous wakes from the rotor. n denotes the harmonic order 
and i denotes the control point on the stator. This appendix derives the working form of these 
formulas for use in code CUP2D based on the viscous wake correlation of Silverstein, Katzoff, 
and Bullivant (ref. 13). 

Figure E-1 shows the variables for the derivation. The objective is to start with a spatial 
description of the wake velocity defect fixed in the rotor frame, convert this to a waveform of 
upwash in the stator frame via coordinate transformation, and then Fourier analyze this to find 
the desired harmonics. From the sketch with the airfoil and wake in Figure E-1, the form of the 
defect is given by 

2 - wv - =exp[-x ( y l Y )  ] 
w r  

where the maximum defect is given by 

and the wake width parameter by 

Y - = 0.68 \ICu (fl - 0.85) 05-31 
L I  

The last two formulas give the decay in magnitude and spread in width as a function of 
chordwise distance measured from the leading edge. 2 is normalized chordwise distance z,/c, 
and Cn is the standard isolated airfoil drag coefficient defined by Cu = (dradunit 
span)/(?hp U2*chord). 

Wake decay and spread are to be specified at the point where the wake is intercepted on the 
stator. This can be found by relating the chordwise positions to the x direction as follows 

z1 cosel  = x s  + z2 cose2 03-4) 

In terms of normalized quantities, this leads to 

(E-5) 
c,  case, 

To obtain the waveform in the stator frame, we note that the relative motion of the two blade 
rows can be specified in teims of y ,  and y2 ,  and then we locate the position in the wake 
in terms of y ,  for a fixed x as follows 
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And since 

it follows that 

Y = y 2 ~ o ~ e 1    COS^] R R ~  -xs ine l  (E-8) 

By expressing x and y2 in terms of z2 and substituting into equation E-1, the wake waveform 
in the stator frame can now be written 

where 

(E- 10) 

If we recognize that this one pulse in a periodic waveform of period 
straightforward matter to express f l t)  in a Fourier series of the following form 

2dB,Q, it is a 

n = l  

where, as usual, the real part is implied. The usual Fourier integral foimulas lead to 

where 

(E- 1 1) 

(E- 12) 

(E-13) 

Now, we have only to find the component of w, normal to the stator chord. This is given by 
wv sin(e2-Ol). Hence, the desired upwash haimonics can now be written 

(E-14) 

where, for convenience, we have used W I N 2  = cose2/cosel. When w / W ,  and Y/c, are 
evaluated from equations E-2, E-3, and E-12 at values of 9,  corresponding to the control points 
zi used by Smith, the result is WWS(n,i) as needed for inversion of the mati-ix equation. 

The above foi*rniilas are equivalent to those used by Kaji and Okazaki except that we retain 
the absolute phase. In code CUP2D, the above formulas are coded in subroutine GTWAKE. 
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APPENDIX F 
LIST OF SYMBOLS. 

= local speed of sound 
= blade chord 
= rotor, stator chord 
= index to count control points on blades and vanes 
= index to count loading panels on blades and vanes 
= cascade index 
= nB,-kB2, circumferential mode order 
= loading harmonic index 
= disturbance (acoustic) pressure 
= axial component of disturbance velocity 
= transverse component of disturbance velocity 
= Smith’s basic solution for the transverse velocity, see appendix C 
= blade gap (spacing between blades or vanes in y direction 
= time 
= maximum velocity defect on viscous wake centerline 
= velocity profile in viscous wake definition 
= axial coordinate 
= axial distance from leading edge of rotor to trailing edge of stator 
= axial distance from leading edge of rotor to leading edge of stator 
= transverse coordinate 
= source coordinate measured in chordwise direction (at angle 0 to axial direction) 

a 

n 
P 
U 

wc 
w V  
X 

V 
V) 
S 

t 

= number of blades on upsteam blade row (which is usually called the rotor) 
= number of blades on downsteam blade row (which is usually called the stator) 

Bl 
B2 
BPF = blade passing frequency 
L = discretized loading source 
LR, LS = loading elements on rotor, stator 
M = Mach number 
Mr 

2; = rotational Mach number of downstream blade row (normally =O for the stator) 
Nh 
N 
P b L  
R 
RI2,etc = modal reflection coefficient, see equation 16 and appendix D 
SC = spacing to chord ratio, sic 
TI4,etc = modal transmission coefficient, see equation 16 and appendix D 
U 
V 

W 
WR, WS= upwash vclocity (normalized) on rotor, stator 

= Mach number relative to blade, W/u 
= Mach number of the mean flow in the swirl (y) direction 
= rotational Mach number of upstream blade row (normally the rotor) 

= number of loading harmonics included in coupling 
= number of panels on rotor (same as number of panels on stator) 
= sound power level in dB, see equation 114 
= effective radius of annulus, used to convert transverse linear coordinate to angle, @=ym 

4 

= axial component of mean (background) flow 
= transverse component of mean (background) flow, relative to the blades 
= transverse component of the mean swirl flow, absolute frame 
= [U2+V2]” = mean flow speed 

VS 

* Note, the analysis of this report applies to counter rotation stages; however, for convenience, 
the upstream blade row is called the rotor and the downstream blade row is called the stator. 
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a = axial wavenumber 
P = transverse wavenumber 
Pnk = - (nB,-kB,) 
e = cascade angle (determined by U and V )  
0 = angular frequency 
pa,pb,pc= mean density in regions A, B, C 
Po = local mean density 
0 = interblade phase angle 
0 
W 
ynk 

= angle in cylindrical coordinates 
= kinematic phase, see equation 11 
= see equations A-17 and A-18 (has different forms in different coordinate systems) 

r = vorticity (loading source) ' 
'nk 

= angular speed of rotor 
= non-dimensional frequency, see equation B-2 

Subscripts 
1 
2 
3 
4 
5 
6 
7 
8 
9 
a 
b 
C 

1 

j 
k 
n 
r 
rr 
rs 
sr 
ss 
S 
X 

denotes upstream-going pressure wave in region B, also denotes rotor 
denotes downstream-going pressure wave in region B, also denotes stator 
denotes vorticity pressure wave in region B 
denotes upstream-going pressure wave in region A 
denotes downstream-going pressure wave in region A 
denotes vorticity pressure wave in region A 
denotes upstream-going pressure wave in region C 
denotes downstream-going pressure wave in region C 
denotes vorticity pressure wave in region C 
denotes condition for region A (upstream of rotor leading edge) 
denotes condition for region B (between rotor leading edge and stator trailing edge) 
denotes condition for region C (downstream of stator trailing edge); also used in wc , the 
maximum velocity defect on the wake centerline. 
= index to count control points on blades and vanes; also, imaginary unit 
= index to count loading panels on blades and vanes 
= cascade index 
= loading harmonic index 
denotes rotor 
denotes effect of rotor on rotor 
denotes effect of rotor on stator 
denotes effect of stator on rotor 
denotes effect of stator on stator 
denotes tangential (swirl) component, also denotes stator 
denotes axial component 

R, I denote real and imaginary parts of a comlex quantity 

overbar denotes normalization by effective radius, R for x's and c's 
( )* denotes complex conjugate 
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Figure 1. Three-dimensional rotor and stator geometry (ref. 3). 

60 



ROTOR 

\ 

STATOR 

\ 
\ 

\ 

FLOW - 
\ 

\ 

ROTATION \ 

Figure 2. Simple rotodstator interaction model. Dashed blades indicate that their role is only 
to generate wakes. They are transparent to acoustic waves. 
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Figure 3. Aft radiated sound power levels from engine designed for BPF cut-off. (Topol, u t  al., 
ref. 5). 
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Figure 4. Two-dimensional geometry of Smith’s theory (ref. 7). 
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01 

OR U 

Figure 5. Geometry for coupled cascade analysis shown at t=O. Either blade row or both blade 
rows can rotate. Note that 8, is normally negative. Also, if the downstream blade 
row rotates, Q2 would be negative. 
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STATOR 
EXIT 
DISK 

Figure 6. Direct waves (KSI, KS2, KS3) from load element LS(n,j) and waves reflected (VSZ, 
VS2, VS3) from actuator disks. Note that the entire wave system is driven b; LS(n,j). 
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Figure 7. Three types of reflectiodtransmission included in the method. vI, v2, v4, v8 are the 
transverse velocity in the pressure waves (denoted by solid arrows). The dashed 
arrows denote vorticity waves with transverse velocity v3 and vg. 
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Figure 8. Comparison with Kaji and Okazaki theoiy for IGV/rotor interaction. Gap/chord ratio 
= 1.0 for both blade rows. Also, B,=B,. Drag coefficient = 0.02. 
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A4 = 0.55 

-1 0 1 2 

Figure 9. Computed results of Kousen and Verdon (ref. 1 1 )  using LINFLO for stator excited 
by vorticity wave. Plots shows the resulting pressure wave, which is cut on upstream 
and cut off downstream. 
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Rotor Rotational Mach Number - MyI 
a) Effect of coupling for one harmonic only 

without swirl. 

Rotor Rotational Mach Number - My1 
c) Effect of swirl for one harmonic with coupling. 

(Note: Major effect is that cascade angles 
change with swirl angle.) 

Rotor Rotational Mach Number - M,I 

without swirl. 

Rotor Rotational Mach Number - M,I 
b) Effect of coupling (and frequency scattering) a) Effect of coupling with swirl. (All effects included.) 

Figure 10. Computed results showing the effects of unsteady coupling, frequency scattering, and 
swirl on the harmonic power levels propagated downstream. B,=38, B,=72, Np=30, 
BVGAP=2.0. Excitation by wake fundamental harmonic only. PWL defined in 
equation 114. 
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REFLECTION COEFFICIENTS AT INLET INTERFACE 

1 i 
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ROTATIONAL MACH NUrnSER - M4 

Figure 11. Absolute value of reflection coefficients for n,k mode. a,b,c denote cuton speeds 
for the mode in the upstream, interstage, and downstream regions. 
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Figure 12. Physical model of mode trapping mechanism. 
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2X BPF 

3X BPF 

4X BPF 

Rotor Rotational Mach Number 
Figure 13. Influence on harmonic levels of Nh, the number of harmonics included in the 

analysis. B,=38, B2=72, Np=50, BVGAP=2.0. 
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Aft 
PWL 

Fwd 
PWL 

Figure 14. Comparison of harmonic power levels upstream and downstream. B,=38, B,=72, 
BVGAP=2.0, N =30, Nh=3. Arrows along abcissa indicate cuton speeds for relevant 
modes. Notation is n, k r where n, k indicates mode order and r is b or c 
denoting the region (inter-row, or downstream) as shown in figure 7. 
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Figure 15. Predictions with and without wake upper harmonics set to 0. B,=38, B2=72, Np=30, 
Nh=3, B VGAP=2.0 
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Figure 16. Effect of changing vane numbers at constant solidity. B,=38, Np=30, Nh=3, 
BVGAP=2.0. Notation on abcissas for mode cuton points same as in figure 14. The 
*'s indicate trapped modes. 
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Figure 17. Effect of changing rotor/stator spacing. B,=38, B,=72,Np=30, Nh=3. BVGAP=axial 
distance from rotor trailing edge to stator leading edge in rotor chords. 
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Figure 18. Sketches for derivation of wake harmonic formulas. 
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